博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hdu5086——Revenge of Segment Tree
阅读量:6425 次
发布时间:2019-06-23

本文共 3072 字,大约阅读时间需要 10 分钟。

Revenge of Segment Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 383    Accepted Submission(s): 163
Problem Description
In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.
---Wikipedia
Today, Segment Tree takes revenge on you. As Segment Tree can answer the sum query of a interval sequence easily, your task is calculating the sum of the sum of all continuous sub-sequences of a given number sequence.
 
Input
The first line contains a single integer T, indicating the number of test cases.
Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.
[Technical Specification]
1. 1 <= T <= 10
2. 1 <= N <= 447 000
3. 0 <= Ai <= 1 000 000 000
 
Output
For each test case, output the answer mod 1 000 000 007.
 
Sample Input
 
2 1 2 3 1 2 3
 
Sample Output
 
2 20
Hint
For the second test case, all continuous sub-sequences are [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. So the sum of the sum of the sub-sequences is 1 + 2 + 3 + 3 + 5 + 6 = 20. Huge input, faster I/O method is recommended. And as N is rather big, too straightforward algorithm (for example, O(N^2)) will lead Time Limit Exceeded. And one more little helpful hint, be careful about the overflow of int.
 
Source
 
Recommend
heyang   |   We have carefully selected several similar problems for you:            
 
显然枚举全部区间是不可能的,我们得找找规律什么的,能够发现,设全部数的和是sum, S1(区间长度为1)的是sum,S2 = 2 * sum - (a1 + an)
S3 = 3 * sum - (2 * a1 + a2 + 2 *an + a1)
再枚举几个就能够找到规律
所以,总的和里。从左往右看 a1出现了(n-1)*n/2次,a2是(n - 2)*(n - 1)/2次........................
从右往左看,an出现了(n-1)*n/2次,an-1是(n - 2)*(n - 1)/2次........................
所以在O(n)的时间里就完毕了计算。注意用__int64以及取模
#include #include 
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;__int64 a[447100];__int64 b[447100];const __int64 mod = 1000000007;int main(){ int t, n; scanf("%d", &t); while (t--) { scanf("%d", &n); __int64 ans = 0, x; __int64 sum = 0; for (int i = 1; i <= n; i++) { scanf("%I64d", &x); b[i] = x; a[i] = (__int64)(n - i) * (1 + n - i) / 2 % mod; sum += x; sum %= mod; } for (int i = 1; i <= n; i++) { a[i] = (__int64)a[i] * b[i] % mod; } for (int i = n; i >= 1; i--) { a[i] += (__int64)(i - 1) * i / 2 % mod * b[i] % mod; } ans = (__int64) n * (n + 1) / 2 % mod * sum % mod; for (int i = 1; i <= n; i++) { ans -= a[i]; ans %= mod; if (ans < 0) { ans += mod; } ans %= mod; } printf("%I64d\n", ans); } return 0;}

转载地址:http://qjyga.baihongyu.com/

你可能感兴趣的文章
Android ListView展示不同的布局
查看>>
iOS宏(自己使用,持续更新)
查看>>
手把手玩转win8开发系列课程(3)
查看>>
NGINX引入线程池 性能提升9倍
查看>>
《淘宝技术这十年》读书笔记 (四). 分布式时代和中间件
查看>>
linux下mongodb定时备份指定的集合
查看>>
oVirt JBAS server start failed, ajp proxy cann't server correct. ovirt-engine URL cann't open
查看>>
CDP WebConsole上线公告
查看>>
ubuntu下安装摄像头应用程序xawtv
查看>>
PostgreSQL 如何比较两个表的定义是否一致
查看>>
Ambari安装Hadoop集群
查看>>
WCF学习之旅—基于ServiceDebug的异常处理(十七)
查看>>
CLREX
查看>>
再也不用担心this指向的问题了
查看>>
使用putty远程连接linux
查看>>
【comparator, comparable】小总结
查看>>
Node 版本管理
查看>>
34、重分布配置实验之分发列表distribute-list
查看>>
命令模式-对象行为型
查看>>
VS2017配置、提高生产力、代码辨识度 (工欲善其事必先利其器)新手必备!
查看>>